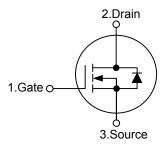
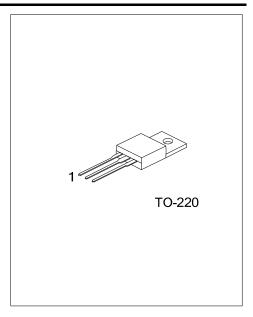


UTC UNISONIC TECHNOLOGIES CO., LTD

UK4145 Preliminary Power MOSFET

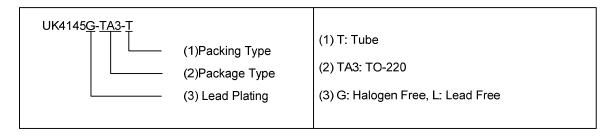
SWITCHING N-CHANNEL POWER MOSFET


DESCRIPTION


The UTC UK4145 is N-channel power MOSFET, suitable for high current switching applications.

FEATURES

- * Low on-state resistance: $R_{DS(ON)} = 10 m\Omega$ (Max.) @ $V_{GS} = 10 V$, $I_{D} = 42 A$
- * Low input capacitance: $C_{ISS} = 5300pF (Typ.)$


SYMBOL

ORDERING INFORMATION

Ordering Number		Dookogo	Pin Assignment			Dooking	
Lead Free	Halogen Free	Package	1	2	3	Packing	
UK4145L-TA3-T	UK4145G-TA3-T	TO-220	G	D	S	Tube	

www.unisonic.com.tw 1 of 4

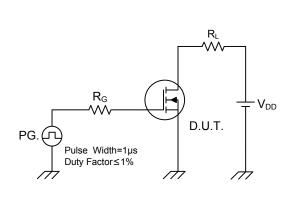
■ ABSOLUTE MAXIMUM RATINGS (Ta =25°C, unless otherwise specified)

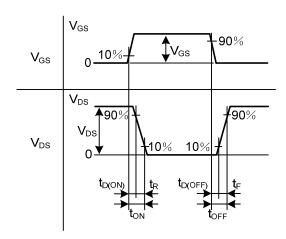
PARAMETER		SYMBOL	RATINGS	UNIT
Drain-Source Voltage (V _{GS} =0 V)		V_{DSS}	60	V
Gate-Source Voltage (V _{DS} =0 V)		V_{GSS}	±20	V
Drain Current	DC (T _C =25°C)	I _D	±84	Α
	Pulse (Note 2)	I _{DM}	±215	Α
Single Avalanche Current (Note 3)		I _{AS}	32	Α
Single Avalanche Energy (Note 3)		E _{AS}	102	mJ
Power Dissipation (Ta =25°C)		P_{D}	1.5	W
Junction Temperature		T_J	150	°C
Strong Temperature		T _{STG}	-55 ~ + 150	°C

Note: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

- 2. PW≤10µs, Duty Cycle≤ 1%
- 3. L = 100 μ H, V_{DD} =30V, R_G =25 Ω , V_{GS} =20 \rightarrow 0V, Starting T_J =25°C,

■ THERMAL DATA

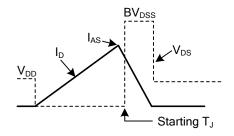

PARAMETER	SYMBOL	RATINGS	UNIT	
Junction to Ambient	θ_{JA}	83.3	°C/W	
Junction to Case	θ_{JC}	1.49	°C/W	

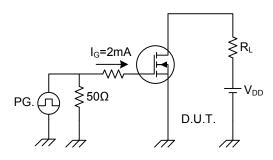

■ **ELECTRICAL CHARACTERISTICS** (Ta =25°C, unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS						
Drain-Source Breakdown Voltage	BV_{DSS}	$V_{GS} = 0V, I_D = 250\mu A$	60			
Drain-Source Leakage Current	I_{DSS}	V _{DS} =60V,V _{GS} =0V			10	μΑ
Gate-Source Leakage Current	I _{GSS}	V_{DS} =0V, V_{GS} =±20V			±100	nA
ON CHARACTERISTICS					ā.	
Gate Threshold Voltage	$V_{GS(OFF)}$	V _{DS} =10V, I _D =1mA	2.0	3.0	4.0	V
Drain to Source On-state Resistance	ם	V _{GS} =10 V, I _D =42 A		7	10	m0
(Note)	R _{DS(ON)}	VGS = 10 V, ID =42 A		7	10	mΩ
DYNAMIC PARAMETERS						
Input Capacitance	C _{ISS}			5300		pF
Output Capacitance	Coss	V_{DS} =10V, V_{GS} =0V, f=1MHz		540		Pf
Reverse Transfer Capacitance	C_{RSS}			330		pF
SWITCHING PARAMETERS					ā.	
Turn-ON Delay Time	$t_{D(ON)}$			25		ns
Turn-ON Rise Time	t_R	V _{DD} =30V, V _{GS} =10V		17		ns
Turn-OFF Delay Time	t _{D(OFF)}	I_D =42A, R_G =0 Ω		66		ns
Turn-OFF Fall-Time	t_{F}			9		ns
Total Gate Charge	Q_{G}			90		nC
Gate Source Charge	Q_GS	V_{DD} =48V, V_{GS} =10V, I_{D} =84A		21		nC
Gate Drain Charge	Q_GD			30		nC
SOURCE- DRAIN DIODE RATINGS	AND CHARAC	CTERISTICS				
Drain-Source Diode Forward Voltage	\/	\/ =0\/ =94A		1.0	1.5	V
(Note)	V_{SD}	V _{GS} =0V, I _S =84A		1.0	1.5	V
Reverse Recovery Time	t_RR	 - _S =84Α,V _{GS} =0V, di/dt =100Α/μs		43		ns
Reverse Recovery Charge	Q_RR	11S -04A, VGS -0 V, α1/αι = 100A/μS		62		nC


Note: Pulsed

■ TEST CIRCUITS AND WAVEFORMS




Switching Test Circuit

Switching Waveforms

Unclamped Inductive Switching Test Circuit

Unclamped Inductive Switching Waveforms

Gate Charge Test Circuit

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

